Challenge and Dataset on Large-scale Human-centric Video Analysis in Complex Events (HiEve) |
Learning a Neural solver for Multiple Object Track
243
1
Benchmark
performance:
MOTA | w_MOTA | IDF1 | MT | ML | FP | FN | ID_Sw | ID_Sw_DT | Frag | MOTP |
---|---|---|---|---|---|---|---|---|---|---|
47.9943 | 42.8249 | 53.3228 | 33.5782 | 23.8195 | 7756 | 27236 | 1243 | 90 | 1836 | 75.6815 |
Detailed
performance:
Video ID | MOTA | w_MOTA | IDF1 | MT | ML | FP | FN | ID_Sw | ID_Sw_DT | Frag | MOTP |
---|---|---|---|---|---|---|---|---|---|---|---|
20 | 77.6949 | 76.0173 | 72.5871 | 69.3878 | 6.1224 | 851 | 1751 | 59 | 5 | 114 | 79.8156 |
21 | 11.4656 | 7.4656 | 30.7442 | 10.0000 | 23.3333 | 341 | 506 | 41 | 1 | 48 | 67.6419 |
22 | 25.7546 | 19.1682 | 29.7221 | 10.6796 | 24.2718 | 807 | 6043 | 357 | 16 | 474 | 68.4532 |
23 | 77.4532 | 72.0925 | 60.4776 | 64.2857 | 14.2857 | 85 | 888 | 38 | 6 | 62 | 79.4600 |
24 | 14.0049 | 1.4863 | 20.8329 | 5.1672 | 49.5441 | 1082 | 10126 | 342 | 42 | 418 | 69.9653 |
25 | 60.7543 | 57.4632 | 78.2383 | 65.5172 | 0.0000 | 1248 | 1086 | 49 | 5 | 88 | 76.8752 |
26 | 33.8441 | 31.6941 | 42.4476 | 41.1765 | 17.6471 | 999 | 1428 | 34 | 2 | 104 | 74.1537 |
27 | 72.4464 | 67.7220 | 62.3203 | 67.7419 | 4.8387 | 426 | 848 | 126 | 6 | 138 | 76.9309 |
28 | 39.5973 | 31.7015 | 46.0806 | 40.0000 | 15.0000 | 729 | 756 | 45 | 5 | 80 | 71.1093 |
29 | 41.3053 | 39.5011 | 52.1699 | 52.0000 | 20.0000 | 595 | 691 | 27 | 1 | 78 | 73.9894 |
30 | 57.8921 | 57.8921 | 64.7658 | 31.1111 | 2.2222 | 128 | 657 | 50 | 0 | 95 | 73.2991 |
31 | 80.7169 | 80.7169 | 74.8466 | 86.6667 | 4.4444 | 114 | 284 | 27 | 0 | 28 | 77.6751 |
32 | 51.3989 | 50.6432 | 58.7282 | 22.5000 | 25.0000 | 351 | 2172 | 48 | 1 | 109 | 74.4100 |